Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm


Ricky Risnantoyo(1*), Arifin Nugroho(2), Kresna Mandara(3),


(1) STMIK Nusa Mandiri
(2) STMIK Nusa Mandiri
(3) STMIK Nusa Mandiri
(*) Corresponding Author

Abstract


Corona virus outbreaks that occur in almost all countries in the world have an impact not only in the health sector, but also in other sectors such as tourism, finance, transportation, etc. This raises a variety of sentiments from the public with the emergence of corona virus as a trending topic on Twitter social media. Twitter was chosen by the public because it can disseminate information in real time and can see market reactions quickly. This research uses "tweet" data or public tweet related to "Corona Virus" to see how the sentiment polarity arises. Text mining techniques and three machine learning classification algorithms are used, including Naive Bayes, Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) to build a tweet classification model of sentiments whether they have positive, negative, or neutral polarity. The highest test results are generated by the Support Vector Machine (SVM) algorithm with an accuracy value of 76.21%, a precision value of 78.04%, and a recall value of 71.42%.
Keywords: Machine Learning, Corona Virus, Twitter, Sentiment Analysis.


Keywords


Machine Learning;Corona Virus;Twitter;Sentiment Analysis

Full Text:

PDF

References


W. K. Chen, (1993). Linear networks and systems. Belmont, CA: Wadsworth, pp. 123-135.

Lin, Ying, (2019). 10 Twitter Statistics Every Marketer Should Know.

Bolen, Johan., Mao, Huina., Zeng, Xiaojung, (2011). Twitter mood predicts the stock market, Journal of Computational Science, 2, pp.1–8.

Maning, D.C., P. Raghavan, and H. Schutze, (2008). Introduction to Information Retrieval, Cambridge University Press.

Parikh, R., & Movassate, M, (2009). Sentiment Analysis of User Generated Twitter Updates using Various Classification, CS224 N Final Report.

G. Gautam, Y. Divakar, (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysist. Seventh International Conference on Contemporary Computing (IC3), Noida, 2014, pp. 437-442.

E. Romelta, (2012). Opinion Mining di Twitter untuk Customer Feedback Smartphone dengan Pembelajaran Mesin. Jurnal Sarjana Institut Teknologi Bandung Bidang Teknik Elektro dan Informatika, Vol. 1.

N. Nurajijah and D. Riana, (2019). Algoritma naïve bayes, decision tree dan svm untuk klasifikasi persetujuan pembiayaan nasabah koperasi syariah. Jurnal Teknologi dan Sistem Komputer, vol. 7, no. 2, pp. 77-82, 2019. doi: 10.14710/jtsiskom.7.2.2019.77-82.

A. A. Prasanti, M. A. Fauzi, and M. T. Furqon, (2018). Klasifikasi Teks Pengaduan Pada Sambat Online Menggunakan Metode N-Gram Dan Neighbor Weighted K-Nearest Neighbor (NW-KNN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 2, pp. 594-601.

Bayhaqy, Achmad., Sfenrianto, S., Nainggolan, K., (2018). Sentiment Analysis about E-Commerce from Tweets Using Decision Tree, K-Nearest Neighbor, and Naïve Bayes. International Conference on Orange Technologies (ICOT),1-6.

Nasukawa, T. and Yi, J., (2003). Sentiment Analysis: Capturing Favorability Using Natural Language Processing. Proceedings of the 2nd International Conference on Knowledge Capture, Florida, 23-25 October 2003, 70-77.

B. Liu, 2012. Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers, May 2012.




DOI: https://doi.org/10.31289/jite.v4i1.3798

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.