Algorithm Implementation Of Interest Buy Apriori Data On Consumer Retail Sales In Industry


Ahmad Fachrurozi(1*), Mufid Junaedi(2), Jordy Lasmana Putra(3), Windu Gata(4),


(1) STMIK Nusa Mandiri
(2) STMIK Nusa Mandiri
(3) STMIK Nusa Mandiri
(4) STMIK Nusa Mandiri
(*) Corresponding Author

Abstract


This data processing has the aim to increase the company's turnover, because by being aware of how the interest in buying goods works, the company can buy products other than the main products that it buys. In increasing company revenue can be done using the Data Mining process, one of which uses a priori algorithm and association techniques. With this a priori algorithm found association technique which later can be used as a pattern of purchasing goods by consumers, this study uses a data repository of 958 data consisting of 45 transactions. From the results obtained goods with the name Paper Chain Kit 50's Christmas is a product that is often bought by consumers and it is known that the most frequent combination patterns are the Retro Spot Paper Chain Kit and the Paper Chain Kit 50's Christmas. So that with known buying patterns, the company manager can predict future market needs, and can calculate the stock of goods that must be reproduced, and goods whose stock must be reduced, and also with the results of the association the manager can manage the layout of the product to be better.
Keywords: Apriori Algorithm, Sales Data, Retail.


Keywords


Apriori Algorithm, Sales Data, Retail.

Full Text:

PDF

References


Buulolo, Efori. 2013. “Implementasi Algoritma Apriori Pada Sistem Persediaan Obat ( Studi Kasus : Apotik Rumah Sakit Estomihi Medan ).” : 71–83.

Fauzy, Mohamad, Kemas Rahmat Saleh W, and Ibnu Asror. 2016. “Penerapan Metode Association Rule Menggunakan.” Jurnal Ilmiah Teknologi Informasi Terapan II(2): 221–27.

Gibran, Rabbanny, and Aripin. 2016. “Analisis Aturan Asosiasi Menggunakan Algoritma Apriori Untuk Menentukan Inventori Apotek.” UDiNus Repository (5).

Gunadi, Goldie, and Dana Indra Sensuse. 2012. “Penerapan Metode Data Mining Market Basket Analysis Terhadap Data Penjualan Produk Buku Dengan Menggunakan Algoritma Apriori Dan Frequent Pattern Growth ( Fp-Growth ) :” Telematika 4(1): 118–32.

Handojo, Andreas, Gregorius Satia Budhi, and Hendra Rusly. 2004. “Aplikasi Data Mining Untuk Meneliti Asosiasi Pembelian Item Barang Di Supermarket Dengan Metode Market Basket Analysis.” Seminar Nasional Teknologi Informasi 2004: 10–17.

Kusumo, Dana Sulistiyo, Moch. Arief Bijaksana, and Dhinta Darmantoro. 2016. “Data Mining Dengan Algoritma Apriori Pada Rdbms Oracle.” TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika 8(1): 1–5.

Listriani, Dewi, Anif Hanifa Setyaningrum, and Fenty Eka M A. 2016. “PENERAPAN METODE ASOSIASI MENGGUNAKAN ALGORITMA APRIORI PADA APLIKASI ANALISA POLA BELANJA KONSUMEN ( Studi Kasus Toko Buku Gramedia Bintaro ).” 9(2): 120–27.

Moh.Sholik, and Abu Salam. 2018. “Implementasi Algoritma Apriori Untuk Mencari Asosiasi Barang Yang Dijual Di E-Commerce OrderMas.” Techno.COM 17(2): 158–70.

Nursanti, Irliana, and Vensy Vydia. 2013. “Market Basket Analysis Pada Perusahaan.” Transformatika 11(1): 13–22.




DOI: https://doi.org/10.31289/jite.v4i1.3775

Article Metrics

Abstract view : 0 times
PDF - 0 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.